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Abstract

Measurements of submicron spheres and pillars of silicon single crystals have exhibited a strain-hardening capacity equal to or greater
than their metallic counterparts. Stress–strain characteristics are reported for diameters ranging from 40 to 400 nm. Evaluations were
performed with nanoindentation-based atomic force, scanning and transmission electron microscopies. Values of strain-hardening expo-
nents up to unity in nanospheres are attributed to a size effect variation on the rate of increase of contact area with deformation. A sur-
face-mediated dislocation nucleation concept is shown to be consistent with length scale effects partially modified by geometry as well as
size. It is proposed, but not proven, that the modification relates to greater constraint in compact spheres as opposed to tall pillars.
� 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

For devices in switches requiring electrical contacts or for
microelectromechanical systems devices subjected to
repeated stress, strain-hardening capacity can be critical.
There has been a lack of understanding of nanoscale strain
hardening due to the difficulties in performing and interpret-
ing such experiments. Additionally, there may be a percep-
tion from some studies on face-centered cubic (fcc)
materials that little strain hardening exists [1–4], although
other more recent experiments report high hardening in both
fcc [5–8] and body-centered cubic (bcc) materials [9–12]. For
other crystal structures such as zinc blendes or diamond
cubic, Rabier and Demenet [13] demonstrated substantial
hardening for compression under confined pressure. Addi-
tionally, a decade of examination of submicron silicon nan-
ospheres in the 40–400 nm range shows that even very small
silicon single crystals undergo strain hardening [14,15]. This
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is a pivotal test case for our hypothesis that materials in crys-
talline form, both metals and ceramics, can possess strain-
hardening capacity in compression. Silicon is known to exhi-
bit more plasticity than oxides and carbides during nanoin-
dentation, but less than metals and intermetallics. For a
material with yield stresses in the GPa range due to the high
Peierls barrier [16,17], it is difficult to conceive of very large
strain-hardening capacity. Observations in both spheres and
pillars refute this misconception.

In the following, experimental evaluations of nano-
spheres and nanopillars will be described, and strain-hard-
ening exponents >0.3 demonstrated. In the case of the
more confined spheres, values near unity arise. Experimen-
tally, the analysis of nanopillars is straightforward but
spheres are analyzed in two ways due to strain gradients
arising from the spherical geometry. Single-crystal silicon
pillars with diameters of 160–415 nm and spheres with
diameters of 39–338 nm are described [15]. Examples of
the plastic deformation which may arise in these samples
are shown in Fig. 1. An ad hoc theoretical application of
surface-mediated dislocation nucleation is then applied to
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Fig. 2. Load–depth curves for repeat loading of a 43.6 nm sphere, where
loading was done with a Triboscope system under load control.

2472 D.D. Stauffer et al. / Acta Materialia 60 (2012) 2471–2478
both spheres and pillars. Size effects are observed wherein
the magnitude of strain-hardening exponents changes
with length scale due to relative geometry and constraint
effects.

2. Experimental procedures

Experimental analysis is complex for spheres due to the
small initial contacts which produce large stresses at the
top and bottom of the spheres compressed by a sapphire
substrate and a large radius diamond tip. The deposition
by hypersonic plasma deposition [18] and focused nanopar-
ticle beam [19] and analysis of such spheres is described in
more detail elsewhere [20]. Originally, [14,15] these spheres
were compressed with a Hysitron Triboscopee mounted
on a Digital Instrumentse atomic force microscope
(Fig. 2). Later, similar experiments were repeated with
in situ imaging, using a PicoIndentere inside a JEOLe

or FEI-T12e transmission electron microscope. For more
details, see Refs. [21,22]. The atomic force microscopy
(AFM) system, run in load-controlled feedback mode,
allowed investigation of smaller nanoparticles than in
transmission electron microscopy (TEM) due to line-of-
sight requirements. As discussed elsewhere [15], repeated
runs on the same nanoparticle could be obtained with total
strains of up to approximately 0.2 for individual runs and a
summation of up to 0.5, as shown in Fig. 2 for a 43.6 nm
diameter sphere. As the total strain could be quite large,
flattening of the sphere needed to be considered. Initially,
Fig. 1. TEM micrograph examples of in situ work-hardened Si nanopil-
lars (a, b) and spheres (c, d). The undeformed 180 nm Si pillar of (a) was
compressed three times to a strain of less than 5% (b). The Au cap, from
the VLS growth, was removed prior to indentation. The Si sphere (c) was
compressed once (d).
the contact areas were small, generating large contact stres-
ses at very small loads. To quantify the stresses, the geo-
metric contact radius was found from

a ¼ dr � d2

4

� �1=2

; ð1Þ

where d is the total displacement divided equally into the
top and bottom of the sphere of radius, r. The geometric
contact consideration is due to elastic and plastic deforma-
tion. Given that the region directly under the contacts is
undergoing severe plastic deformation, additional steps to
evaluate the global strain hardening were required, partic-
ularly for repeat runs. First, for any repeat run the initial
contact area increases due to the residual plastic deforma-
tion from the previous run(s), as measured by AFM and
described elsewhere [14,15]. Second, the initial strain for
any given run started from zero in the unloaded state as re-
quired. To obtain a more representative equivalent stress, a
conversion of initial radius of the sphere, r0, to an effective
radius, reff, was needed. This was accomplished using con-
stancy of volume, assuming an increasing pancaking of the
sphere to more closely resemble a right cylinder. A uniform
stress of a right cylinder with an equivalent volume was
found from:

4

3
pr3

0 ¼ pr2
eff ðh0 � dÞ; ð2Þ

where h0 was taken to be equal to the original diameter of
the sphere, h0 = 2r0, giving:

reff ¼ 1:155r0

r0

2r0 � d

� �1=2

: ð3Þ

See Fig. 3. Stresses were evaluated in two ways, using
the equivalent right cylinder with A ¼ pr2

eff , which gives
an average stress for an equivalent volume. A harmonic
mean with a contact stress was based on Eq. (1), and the
average stress obtained from Eq. (3). The harmonic mean
stress considers the deformed sphere as a layered structure,
with stresses taken as layers of highly deformed regions at
the contact based upon Eq. (1) and a more nearly average
area radius from Eq. (3). This concept of a layered struc-
ture, as observed by TEM contrast differences [22] gives



Fig. 3. Schematic representation of (a) the harmonic mean approximation
in a sphere, where a bilayer system is used to model the damage region in
the sphere, and (b) the right-cylinder approximation.

Fig. 4. True stress–true strain for two spheres tested in the Triboscope
system, where the harmonic mean approximation was used to determine
the stress. Work hardening, due to cumulative damage, can be seen as
increasing stress for a given strain as the run number increases. Strain-
hardening exponents are given in Table 1a. Typical error bars due to
instrument noise floors as shown outside a given data point are often
within the symbol at higher stresses and strains.
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rise to a harmonic mean stress as used by Hill for compos-
ite structures [23]. This gave a stress intermediate to those
using Eqs. (1) and (3) with the harmonic mean given by:

rm ¼
2

1
rc
þ 1

rcyl

: ð4Þ

Here rc is the contact stress using Eq. (1) and rcyl is the
equivalent stress of a right cylinder using Eq. (3). The har-
monic mean stress is the Voigt average which represents a
lower bound. A similar set of procedures for strains took
the strain in the two contact regions, after Tabor [24], to be:

ec ¼ 2 0:2
a
r

� �n o
; ð5Þ

and took the average strain throughout to be:

ed ¼
d
d
: ð6Þ

Here the extra factor of 2 in Eq. (5) is due to strain on
both the top and the bottom. Coupling the Tabor strain
with the global estimate, Eqs. (5) and (6), gave a harmonic
mean strain given by:

em ¼
2

1
ec
þ 1

ed

: ð7Þ

Two types of stress–strain representations used Eqs. (3) and
(6) for the right-cylinder approximation and Eqs. (4) and (7) for
the harmonic mean. The strain-hardening behavior was found
from true stress–true strain plots in compression:

rT ¼ rð1þ eÞ; eT ¼ lnð1þ eÞ; ð8Þ
keeping in mind that, in compression, strains are negative.
From such plots, the strain-hardening exponents, n, were
determined from the power-law equation, with the coeffi-
cient, k, giving:

rT ¼ ken
T : ð9Þ

Using Eq. (9), strain-hardening exponents were also
determined for columns of nanopillars loaded in compres-
sion. Only a few of these data were available with two rep-
resenting pillars prepared by focused-ion-beam (FIB)
machining, and others representing growth by a vapor–
liquid–solid (VLS) process where the Au growth catalyst
was removed using a commercially available chemical etch-
ant, Transene, TFA. The FIB samples had a small taper
[25] but the VLS samples were relatively straight-sided.
In creating the stress–strain plots, it is emphasized that
the load–displacement curves were only analyzed up to
the point of fracture. Signatures of either load drops for
the in situ TEM experiments or height image drops during
AFM scans, as explained elsewhere [14,15], signified frac-
ture. Data were only used up to the point of fracture.

3. Results

Using true stress–true strain, for two repeat ex situ load-
ings of spheres in Fig. 4, strain-hardening exponents are
reported for repeat runs on five nanoparticles in Tables
1a–c. These were based on the right-cylinder method.
Apart from the smallest nanospheres, there appears to be
a strong increase in strain-hardening exponent with
increased sphere diameter. Average values increased by a
factor of 3 from 0.25 to 0.75 as size increased from 43.6
to 92.7 nm.

Additionally, single runs were generally conducted to a
strain of 0.4, calculated by Eq. (6), for eight spheres in
the size range 60–340 nm. These tests were compressed with
the in situ system, with all except the 63 nm sphere tested in
displacement control. The 63 nm sphere was tested in open
loop (OL). Examples for four of these runs, see Fig. 5,
show a similar trend of increasing stress as size decreases.
Here, for stresses defined by the right-cylinder method,
there was nearly a factor of 6 increase in average stress
as size decreased. This is larger than what might be
expected as addressed in the discussion below. With the
exception of the OL tested sphere, a factor of 4 increase
in sphere diameter produced a factor of 4 increase in
strain-hardening exponent (Table 1b and Fig. 5). To dou-
ble check these estimates of strain hardening, the layered
structure of the harmonic mean approach of Eqs. (4) and
(7) was also used to determine n. Four true stress–strain



Fig. 5. (a) A comparison of the true stress–true strain plots for the first compression of individual spheres, tested in load control. Stresses here are
determined using the right-cylinder approximation. (b) A comparison of the true stress–true strain plots for the first compression of individual spheres
determined using the harmonic mean approximation. With respect to the model curves, it is emphasized that the two curves represented are due to the
Schmid factor extremes chosen rather than any clustering of data to a particular orientation. Typical error bars due to instrument noise floors shown
outside a given data point are often within the symbol at higher stresses and strains.
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plots (Fig. 5b) can be compared to the data for the 90 and
162 nm spheres of Fig. 5a, with similar strain-hardening
exponents.

To check the validity of using indirect calculations of
strain-hardening exponents, direct measurement of the
contacting radius was attempted from individual movie
frames on two spheres, one of 138 nm and another of
338 nm diameter. Most importantly, the limited space in
which one can view the compression inhibited our ability
to make precise measurements given the possibility of tilt
or parallax. Nevertheless, using Eqs. (4) and (7) to deter-
mine strain-hardening exponents, it was found that n for
the largest sphere was 12.7% smaller and n for the smaller
one 6.7% larger than those based only on calculations.

There was one major discrepancy when comparing the
63 and 93 nm diameter spheres tested by AFM compared
to the 63 and 90 nm spheres tested by TEM. The AFM-
tested strain-hardening exponents were about 50% higher.
Although unproven, the only major difference appears to
be the electron beam effect which can produce radiation-
enhanced dislocation glide. Even though the transmission
electron microscope was only operated at 120 keV, it is
conceivable that more rapidly moving dislocations in the
in situ TEM experiments may lead to dislocation rear-
rangement or egress from a given diameter sphere, which
in turn affects strain hardening.

Turning to the micropillars, the relatively uniform diam-
eters simplified the stress analysis and only load/area and
displacement/length were used to analyze engineering
stress–strain, followed by Eq. (8) to obtain the true
stress–true strain. Six pillars were analyzed for their
strain-hardening characteristics. The 180 nm diameter pil-
lar was repeatedly compressed to small plastic strains, of
the order of 1–2%, to stresses between 2 and 4 GPa
(Fig. 6a). Beyond this there was clearly an onset of bend-
ing. Four other pillars, two each of h1 00i and h111i orien-
tations, were singly compressed (Fig. 6b). In general the
strain-hardening exponent increased with repeat runs, but
seemed to decrease with increasing pillar size. This decrease
appears inconsistent with the sphere size effect which
showed strain hardening increasing with increasing sphere
size (Table 1c). These differences are discussed, after some
theoretical considerations, in the following sections.

4. Theoretical considerations

Due to the apparently large variations in strain-harden-
ing exponents in Tables 1a–c, it was important to provide
an analysis as to why this size-dependent effect might arise.
Two obvious variables are dislocation nucleation limited
and dislocation motion limited behavior. As size decreases,
the number of nucleation sites decreases. Similarly, a
decreased size could limit the mean free path of dislocation
motion if there is any constraint at the surface. Constrained
flow could possibly increase both strength and strain hard-
ening. With reliable true stress–true strain behavior from
in situ TEM and SEM methods analogous to those pio-
neered by others [26–31], the experimental results can be
compared to a proposed first-order model as detailed in
the Appendix (Supplementary information). In terms of
the available surface sites, and assuming that the activation
of a surface site is proportional to a stress, the strain-hard-
ening exponent is proposed to be:

n ¼ const:� no: of surface sites

unit area
� r

l
; ð10Þ

with the stress, r, normalized by the shear modulus, l. As
seen in the Appendix, constants of bc times a Burgers vec-
tor, b, as related to contact surface sites can be combined
with a Hall–Petch representation of stress to give:

n ¼ pkyd1=2 cos / cos k
bcbl

; ð11Þ

with cos / cos k resolving the shear stress. As dislocations
are either non-existent or contribute little to strain harden-
ing below a cut-off diameter, d0, this is included by modify-
ing n to be:

n ¼ pkyðd � d0Þ1=2 cos / cos k
bcbl

: ð12Þ



Fig. 6. True stress–true strain for (a) repeat compression for a 160 nm h111i-oriented Si pillar, grown by VLS—bending of the pillars was observed at
larger strains; and for (b) three FIB-cut Si towers. Two towers are oriented in the h100i, and one in the h111i. Values for the strain-hardening exponent
are given in Table 1c. Typical error bars due to instrument noise floors as shown outside a given data point are often within the symbol at higher stresses
and strains.
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With bc defined, the strain-hardening results can be com-
pared for the deformed spheres using Eq. (12). However, the
cylinders represent a different geometry. As with the spheres,
it is assumed that the number of dislocation nucleation sites
increases with stress, but with a different functionality (see
Appendix for details). For cylinders, then, it is proposed that
the strain-hardening exponent is given by:

n ¼ pkyd
1=2 cos / cos k

16bcble1=2
: ð13Þ

The somewhat smaller strain-hardening exponents in the
pillars compared to the spheres is attributed to a less effec-
tive confinement in a tall cylinder, with a greater volume-
to-surface ratio.

5. Discussion

It is important to demonstrate the differences in strain-
hardening exponents for the two proposed methods, har-
monic mean and right-cylinder averages, Eqs. (1)–(8).
Qualitatively, the stress–strain plots appear similar
(Fig. 5a and b) to those measured by TEM; a direct com-
parison of the exponents is shown in Fig. 7a. For both
approaches, there is a strong increase in strain-hardening
exponent with increasing sphere diameter. Both methods
gave similar results for spheres less than 150 nm in diame-
ter, but the harmonic mean approach consistently gave
higher strain-hardening exponents at larger diameters. Fur-
ther analysis used the simpler right-cylinder method.

Qualitatively, for both sets of sphere data, see Tables 1a
and b, there is a large increase in n with sphere diameter,
with the exception of two points (see Fig. 7b). This increase
in n is considered to be due to the increase in dislocation
nucleation rate in the larger spheres with increasing strain.
It must be considered that since the activation area bears
an inverse relationship to the applied stress, then as stress
increases, more nucleation sites become available. This is
coupled to the high stresses in the small spheres. However,
these sites are rapidly exhausted in small spheres and the
subsequent rate of hardening is much reduced. This is exac-
erbated by the confinement represented by the smaller
spheres. The diameter is coupled to the length of the mean
free path of dislocations due to the back-stress from dislo-
cation interactions. This can prevent further dislocation
nucleation in the smaller spheres. It is proposed that it is
this combination of surface-mediated dislocation nucle-
ation and confinement that leads to smaller increases in dis-
location densities per unit strain and hence lower strain-
hardening exponents. Clearly, confinement decreases in lar-
ger spheres and, coupled with increased contact area, the
potential for dislocation nucleation increases with larger
strains. As stated previously, this is somewhat offset by
the elevated flow stresses in small spheres. Both of these
features are embodied in Eq. (12).

The data intersects the theory through the activation
area, A�, as discussed following Eq. (A8). Since A� is defined
by V� and bc can be defined for a given ky, the only other
unknown in Eq. (12) is d0, a cut-off parameter. Here, a d0

of 40 nm was chosen to fit the data and a ky of 1 MPa m1/2

was selected as it approximated the strength data of this
investigation. With the two extremes of cos / cos k based
on {111} slip and orientations of either h100i or h111i,
Eq. (12) was compared to data from Tables 1a and b in
Fig. 7b. It can be seen that the strain-hardening exponents
are at least qualitatively reproduced but that a discrepancy
between the two loading methods results with the
displacement control data favoring a theoretical fit of
cos / cos k ¼ 0:408 and the load control data favoring a fit
with cos / cos k ¼ 0:272. This is fortuitous, however, as the
loading axis for all of these spheres is unknown. The two
points furthest off either curve of Eq. (12) represent a
38.6 nm diameter sphere and the solid point one 63 nm in
diameter. The latter, which was evaluated under OL condi-
tions, appears to match the load control data better.

Next, consider the data of Table 1c and Fig. 6a and b for
pillars. Because of prior bending in the previous runs,



Fig. 7. (a) Strain-hardening exponent for the Si spheres plotted vs. the sphere diameter. Values calculated by the right-cylinder approximation (squares)
are smaller than those using the harmonic mean approximation (circles), especially for larger diameters. (b) The strain-hardening exponents for the load-
controlled data trend higher than the dashed lines, which are based on Eq. (12) using large variations in cos / cos k. Typical error bars due to instrument
noise floors as shown outside a given data point are often within the symbol at higher stresses and strains. Error bars on sphere diameter are within the
data points.

Table 1a
Strain-hardening exponents, measured for each run for multiply loaded Si spheres with diameters ranging from 38.6 to 92.7 nm. A Triboscope/AFM
system was used in load-controlled mode for these compressions. The strain-hardening exponents were calculated using the right-cylinder approximation.

Sphere diameter (nm) Test method Run #/strain hardening exponent, n �n

38.6 LC 2/0.79 5/0.90 7/0.94 9/0.75 12/0.78 15/0.66 0.80 ± 0.14
43.6 LC 2/0.23 3/0.21 4/0.15 5/0.38 6/0.29 0.25 ± 0.13
50.3 LC 2/0.41 3/0.49 4/0.49 5/0.44 7/0.39 0.44 ± 0.05
63.5 LC 2/0.62 3/0.63 4/0.64 5/0.64 6/0.63 0.63 ± 0.02
92.7 LC 3/0.81 4/0.81 5/0.75 6/0.77 7/0.69 8/0.65 0.75 ± 0.10

LC = load control.

Table 1b
Strain-hardening exponents, measured for each run for Si spheres singly compressed primarily in displacement control. Here, an in situ PicoIndenter was
used to perform the compressions. Exponents are given for each of the two analysis methods, i.e. harmonic mean and right-cylinder approximations.

Sphere diameter (nm) Test method n (Right cylinder) n (Harmonic mean) �n

63 Open Loop 0.55 0.43 0.49
90 DC 0.33 0.31 0.32

113 DC 0.23 0.23 0.23
138 DC 0.64 0.67 0.66
162 DC 0.76 0.88 0.82
173 DC 0.84 1.23 1.04
255 DC 1.09 1.31 1.20
338 DC 1.21 1.40 1.31
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stresses to achieve the same 5% strain progressively
decreased from 4.5 to 3.3 GPa. Note that the aspect ratio,
i.e. height to diameter, was closer to 5:1 for the smallest
diameter pillars. For reliable measures of strain hardening,
additional experiments will be required for aspect ratios
closer to 3:1.

There are literature data for pillars of this aspect ratio for
somewhat larger MgO single crystals. As shown in the
Appendix, n values ranged from 0.2 to 0.4 consistent with
the reported measurements here for larger-diameter silicon
nanopillars. For the four larger-diameter pillars with smaller
aspect ratios, the bending is sufficiently suppressed that rea-
sonable strain-hardening exponents of 0.3 ± 0.08 are found
for the two pillar orientations of h100i and h111i. As the
average pillar size was 380 nm, this result compares to a mea-
sured strain-hardening exponent of greater than unity for a
corresponding diameter sphere. This may be qualitatively
understood considering the relative confinement and
increased dislocation activity for the sphere compared to
the pillar. How do these differences compare to what might
be expected from Eqs. (11)–(13)? The average strain for the
four largest samples is 0.109, giving e1=2 equal to 0.33. Since
4e1=2 is little different from unity it appears that the strain-
hardening exponent for comparable diameter pillars could
be nearly a factor of 4 smaller than the spheres as observed
for the 300–400 nm size range.

Finally, it is probably that some of the larger spheres,
but not the pillars, exhibit the diamond cubic to b-Sn



Table 1c
Determination of strain-hardening exponents of Si pillars using the in situ SEM and TEM PicoIndenters for h111i- and h100i-oriented pillars operated in
displacement control.

Pillar diameter (nm) Test method n Orientation Notes

180 DC 0.415 h111i Plastic bending or
200 DC 0.706 h111i buckling suggested
310 DC 0.316 h100i FIB cut
392 DC 0.355 h111i VLS grown
400 DC 0.293 h100i FIB cut
415 DC 0.220 h111i VLS grown

DC = displacement control, FIB = focused ion beam, VLS = vapor–liquid–solid.
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(silicon I!II) phase transformation on loading. This usu-
ally manifests itself by a pop-in (loading) or pop-out, or
knee, in the load–displacement curve (unloading) [33,34].
In a separate study of nano- and submicron-spheres, it is
shown that there is a size transition in behavior from defor-
mation of microspheres to nanospheres [35]. Below approx-
imately 100 nm there is no phase transformation, while for
larger microspheres a phase transformation occurs. Perhaps
appropriate to this study, Gogotsi et al. suggest that “inden-
tation-induced metallization (Silicon II) . . . is accompanied
by confined plastic flow . . . in order to partially accommo-
date high strains in the surrounding material.”29 In fact some
characteristic pop-outs, but mostly a knee in the unloading
curve of larger nanospheres, have been observed, which is
often cited as a signature of the phase transformation [36].
Future work should address whether it is dislocation plastic-
ity, phase transformation or a combination of the two which
results in the large jump in strain-hardening exponent in the
100–150 nm diameter regime.

Refinement of such approaches for both geometries
requires discretized dislocation dynamics, computational
approaches using molecular dynamics and detailed electron
microscopy studies using in situ deformation techniques.

Additionally, one would expect a transition from a pri-
mary plastic regime to crack tip blunting or mixed mode
regime, and finally to a bulk-type behavior. In fact, this
is what is observed by Östlund et al. in Si pillars as the
diameters increase to 400 nm [25].

6. Summary

Experimentally, deformation of single-crystal Si nano-
spheres and submicron pillars have been measured in com-
pression. Considerable plasticity is evident, with plastic
strains approaching 0.5 for spheres. As observed by TEM
and AFM with in situ loading devices, considerable strain
hardening is also observed. Strain-hardening exponents
ranging from 0.2 to 1 are found. Size dependence increases
as the square-root of the sample diameter, which can be
explained by nucleation source-limited and flow-limited
theory. For a given diameter in the range of 200–400 nm,
spheres have a hardening exponent approximately three
times larger than that of pillars with a 4:1 aspect ratio, a
finding that can be explained by the relative confinement
and contact areas in pillars compared to spheres.
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